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Formation, Evolution, and Tuning of Frequency
Combs 1in Microelectromechanical Resonators

Mingyo Park

Abstract— This paper presents the formation, evolution, and
tuning of frequency combs in a piezoelectric micromechanical
resonator, based on nondegenerate parametric pumping. The
frequency combs consist of precisely spaced spectral lines located
close to the mechanical resonance modes of a drumhead micro-
electromechanical resonator. We investigate the parameter space
of different dynamical regimes, wherein induced signal/idler tones
break down into combs, and evolve into triangular-envelope
shaped spectrums. Furthermore, we discuss the tuning mech-
anisms of frequency combs and study the dependency of the
center frequency of combs and the frequency spacing between the
spectral lines on the pump power and frequency. We demonstrate
the evolution of combs in a mechanical system with direct
electrical excitation and readout. This paper offers ultra-compact
(30 um in diameter), low-power (—13 dBm of threshold power)
and highly tunable integrated frequency comb sources as low-cost
alternatives to optomechanical frequency combs. [2018-0254]

Index Terms—MEMS frequency combs, duffing nonlinear-
ity, piezoelectric resonator, nondegenerate parametric pumping,
mode coupling.

I. INTRODUCTION

HE interaction between optical cavities and mechani-

cal resonators has attracted enormous interest for its
outlook in quantum phenomena [1]-[3]. In optomechanical
systems, phonons are generated and dissipated through energy
exchange due to coupling effects with photons [1], [2]. In such
parametrically-amplified systems, optical frequency combs are
induced by an external continuous-wave (CW) pump laser
coupled to the nonlinear cavity by Kerr nonlinearity [4].
Existence of phononic frequency combs were theoretically
predicted in [5] and recently observed experimentally in MEM
resonators based on Duffing nonlinearity and mode cou-
pling between a resonance mode and parametrically-excited
modes [6], and 1:3 internal resonance mode coupling [7].
Previously, we reported on observation of phononic fre-
quency combs in a piezoelectric circular drumhead resonator
using two resonance modes within the same phonon cavity
via nondegenerate parametric pumping [8], and presented a
novel dual-mode sensor based on the mechanical frequency
combs [9]. Such comb sensors provide a low-noise solution
to resonance frequency tracking, by eliminating electronics
circuitry and feedback loop required to sustain oscillation for
frequency-shift detection [9], [10]. The focus of this letter,
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Fig. 1. (a) The comb generation using nondegenerate parametric pump
frequency at sum of two mechanical modes, corresponding to ugp; and ujj.
Sets of combs are observed; two sets are placed close to the signal/idler
frequency and one centered at the pump frequency. On the top right, SEM
image of a standalone AIN-on Si micromechanical resonator is shown. (b) By
tuning pump amplitude and frequency, the center frequency of combs and
Af p can be detuned.

is investigation of various dynamical regimes of parametric
excitation that lead to generation of signal/idler tones, fre-
quency combs and chaotic behavior as the parametric pump
power and frequency varies. We observe similar tendencies
to temporal dissipative solitons in optomechanical resonators
[3], [11]. The generation of frequency combs in micro-
resonator based optomechanical systems has been attributed
to compensation of dispersive behavior of phonons with cubic
nonlinearities [1]. In our mechanical system, the cubic non-
linearity required for generation of combs, is captured by the
Duffing term in the equation of motion, described in Eq. 1.

II. DYNAMICAL REGIMES OF PARAMETRIC INSTABILITY
A. Mechanical Mode Coupling and Duffing Nonlinearity

The concept of parametric amplification has been widely
used in various contexts, such as microwave amplifiers and
optomechanical oscillators [12]. In this work, we use nonde-
generate parametric pumping for energy transfer from pump
to the mechanical resonance modes. Fig.1(a) shows the device
geometry and displacement mode shapes of two flexural
resonance modes. When a single-tone electric pump is applied
at a frequency close to the sum of two mechanical modes
(wp = om1 + w2 + Jp), two frequency tones—idler and
signal— are induced close to the two mechanical modes,
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Different dynamical regimes depicting the sequential evolution of power spectrum as the parametric pump frequency increases from (a) to (d),

while the pump power is kept constant at 7 dBm (500 mV amplitude). (a) No parametric excitation is observed. (b) Single tone generated close to uyj
resonance mode of the circular membrane. This state exists at pump frequencies ranging from 8.83 MHz to 8.902 MHz. (c) The tone breaks down into several
equidistanced spectral lines (frequency combs), pump frequency ranging from 8.904 MHz to 8.916 MHz, resembling the spectrum of temporal solitary waves
in optomechanical systems. (d) Triangular-envelope spectrum persists for a frequency range of 106 kHz bandwidth from 8.918 MHz to 9.024 MHz.

where J, denotes the pump frequency detuning from the
sum of mechanical modes. Following the notation described
in [2], the equation of motion of the signal and idler modes
in presence of Duffing nonlinearity (f) are captured by Eq. 1
(a,b), when a single pump signal with frequency of w, and
amplitude of T is applied to the resonator. The effective mass
of both modes is set to unity for simplicity.

.. Wm1 .
X+ —= i1+ @y x1 4 frodxi = Txacoswyt, (1.a)
01
. Wm?2 .
X2 + Q—xz + a),znzxz + ,Bza),znzxg = I'xjcoswpt, (1.b)
2

where x; > are the mode displacements, corresponding to ug|
and u1; modes of circular membrane shown in Fig. 1(a).
Mode 1 has a resonance frequency of w,,; = 27 x 2.9 MHz
with quality factor (Q1) of 7500 and mode 2 resonates at
wmr = 2m X 6 MHz with Q> of 4200 [9]. The details of the
solutions to the parametrically-coupled equations of motion
are described in [2]. In this mechanical system, the motion of
the first mode induces stress that shifts the frequency of the
phonon cavity, creating sidebands at ;1 + @;,2. The paramet-
ric modal coupling is given by the stress-induced change in
the phonon-cavity frequency for a given displacement of each
mode [2]. For certain (I' and J,) combinations, the solutions
to the coupled equations of motion yield a train of equidistant
spectral lines.

B. Frequency Comb Formation and Evolution

In this section, we investigate four different dynamic states
of parametric excitation close to mechanical resonance modes
of a drumhead circular MEM resonator. Fig.2 (a)-(d) depicts
the continuous sequel of parametric excitation in a strongly
driven nonlinear MEM resonator. At a constant pump power
7 dBm, pump frequency is swept with 2 kHz steps, starting
at 8.828 MHz, where no signal/idler tone is observed. The
spectrum evolves into formation of a single tone (signal/idler),
combs, and chaotic behavior. Fig.3 (a) shows the parameter
map, corresponding to these four dynamic states as the pump
power and frequency is detuned (I" and J,,). The four different
states are described below:

State 1 (No Parametric Excitation): Corresponds to dark
blue area in parametric tongue and marks the beginning and
end of the evolution sequence, shown in Fig.2 (a).

State 2 (Single Tone Formation): Corresponds to dark red
area in parametric tongue and is located at the mechanical
resonance mode ujq, or the signal mode, shown in Fig.2 (b).

State 3 (Frequency Comb Formation): Corresponds to green
area in parametric tongue. Under certain combination of pump
amplitude and frequency, frequency combs with equidistant
lines are generated, as shown in Fig.2 (c). The center frequency
of the comb is close to u;; mechanical mode and can be tuned
by detuning pump frequency and amplitude.

State 4 (Triangular-Envelope Formation): Corresponds to
pink area in parametric tongue. We observed a triangular
shaped envelope formation in the power spectrum evolution,
depicted in Fig.2 (d) that maintains for a large frequency
range. Fig.3 (b) shows the amplitude of parametrically-
excited tone or center frequency of comb depending on the
combination of pump frequency and amplitude. The threshold
power for parametric oscillation is —14.5 dBm and the
minimum power required to generate frequency combs is
only —13 dBm, which corresponds to 50 mV of threshold
pump amplitude. This marks the lowest threshold power
for excitation of mechanical combs compared to 100 mV
and 600 mV values reported in [6] and [7] respectively.
Furthermore, the center frequency power of the combs and
signal tone is limited by the insertion loss of the resonator
and impedance mismatch. This can be improved by arraying
resonators to reduce the motional impedance, as well as using
an optimal impedance termination.

III. FREQUENCY COMB TUNING MECHANISMS

Using nondegenerate parametric amplification, three sets
of frequency combs were observed; two sets were located
close to the two mechanical resonance modes (up; and ujp)
and one centered at the pump frequency (f,) as described
in Fig.1 (a). Fig.1 (b) shows the comb measurement scheme,
highlighting tuning of center frequencies (f.; and f2) and
frequency spacings (Af; and Af>) of the two sets of combs
located close to the mechanical modes by detuning the pump
frequency and power.

A. Center Frequency Tuning

Fig.4 (a) shows the dependency of center frequency of
signal/idler as the pump amplitude is swept. The center
frequencies of combs f.; and f.» increase/decrease simulta-
neously such that f.y + feo = f, condition is satisfied [6],
verifying parametric amplification criteria. It is observed that
the sum of the slopes of the center frequency versus pump
amplitude add up to zero, as expected.

The center frequency of the combs is also sensitive to pump
frequency. As shown in Fig.4 (b), the comb center frequencies
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Fig. 3. Parametric tongues: (a) Different dynamical states in the parameter
map of detuning pump frequency and amplitude: no parametric excitation
(blue), excited single tone (red), triangular-envelope shape (pink) and combs
(green). (b) Map of induced single-tone power (signal) or power of center
frequency of the frequency combs by detuning pump frequency / amplitude.
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Fig. 4. Frequency tuning mechanisms: (a) At constant pump frequency,
center frequency (f.1,Idler) and (f., Signal) shift by pump amplitude.
(b) At constant pump amplitude, f.; and f.o shift by pump frequency.
(c) Tuning of frequency spacing Af with pump amplitude. (d) Tuning of
Af with pump frequency. The measured frequency comb spectrums: (e) at
constant pump frequency and (f) at constant pump power.

(fe1 and fy) increase, as the pump frequency increases at a
constant amplitude with a linear trend. The slopes of the lines
add up to one, verifying that the comb center frequencies f.|
and f. are tuned by pump frequency when detuned around
the sum of the two mechanical modes. The proposed MEM
frequency combs have highly tunable characteristic with center
frequency tuning ratio of 77% depending on pump frequency.

B. Frequency Spacing Tuning

Fig.4 (c), shows Af; and Af> versus pump amplitude
at a constant pump frequency of 9.3 MHz. As increasing
pump amplitude with 100 mV steps, Af; and Af> increase
equally. It is worth noting that in this regime Af; and Af>
are locked to A f3, which is the frequency spacing of the comb
located at the pump frequency, i.e. Af; = Afa = Afs.
The measured frequency spacings for all the three combs

vary from 70 kHz to 90 kHz with similar trends. Fig.4 (d)
shows Af; and Af, versus pump frequency at a constant
pump amplitude of 700 mV. As pump frequency is increased
with 2 kHz steps, Af; and Af, increase with linear trend.
The combs exhibit equal left/right (—Af/+Af) frequency
spacings from the center frequency, verifying the equidistance
nature of the spectral lines. Fig.4 (e), (f) show the measured
power spectrum of combs depending on detuning pump fre-
quency and amplitude. Fig.4 (e) shows the blue and red combs
with different frequency spacing when pump amplitude varies
at a constant pump frequency. Fig.4 (f) depicts frequency
spacing tuning of blue and red comb spectrums when pump
frequency is detuned at a constant pump amplitude.

IV. CONCLUSION

This work reports on different dynamic regimes of paramet-
ric excitation and tuning mechanisms of frequency combs in
a standalone piezoelectric MEM resonator via nondegenerate
parametric pumping. Cubic nonlinearity due to geometrical
Duffing effect along with stress-induced mode coupling in an
Aluminum Nitride (AIN) circular MEM resonator, induce var-
ious parametrically-excited regimes. Signal/idler generation,
comb formation, and triangular-envelope shaped spectrum
are experimentally observed, which resemble soliton-behavior
in optomechanical microresonators. This work offers
small footprint, low-cost and highly-tunable alternative to
optomechanical combs; that operates with fully-integrated
piezoelectric transducers in a mechanical system and exhibits
low threshold power of only —13 dBm for comb generation.
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